

Environmental Product Declaration

as per ISO 14025 and EN 15804 +A1

Owner of the declaration:	Siderurgica Latina Martin S.p.A.
Publisher:	Kiwa BCS Öko-Garantie GmbH - Ecobility Experts
Programme holder:	Kiwa BCS Öko-Garantie GmbH - Ecobility Experts
Declaration number:	EPD-SLM-080-EN
Issue date:	04.05.2020
Valid to:	04.05.2025

1. General information

Siderurgica Latina Martin S.p.A.

Programme holder

Kiwa BCS Öko-Garantie GmbH

Ecobility Experts
 Marientorbogen 3-5
 90402 Nürnberg

Germany

Declaration number

EPD-SLM-080-EN

This declaration is based on the Product Category Rules

PCB B - Requirements on the Environmental Product Declarations for steel construction products, Edition 2020-03-13 (draft)

Issue date 04.05.2020

Valid to

04.05.2025

Signature
Frank Huppertz
(President of Kiwa BCS Öko-Garantie GmbH – Ecobility
Experts GmbH)

Signature

Prof. Dr. Frank Heimbecher

F. Here

(Chairman of the independent expert committee BCS Öko-Garantie GmbH – Ecobility Experts GmbH)

PC Wire

Owner of the declaration

Siderurgica Latina Martin S.p.A. Via Oger Martin, 21 Ceprano (Fr) Italy

Declared product / declared unit

1kg PC Wire

Scope

PC Wire is a construction steel product, mostly used to produce railroad sleepers or as used as reinforcement in concrete prestressed elements. The product is manufactured in Ceprano, Italy. This EPD relates to a specific product, which is packed either in coils or in bundle of straight cut-to-lenth bars. Kiwa BCS Öko-Garantie GmbH — Ecobility Experts shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm EN 15804:2012+A1:2013 serves as the core PCR

Independent verification of the declaration and data according to ISO 14025:2011-10

 \square internally

 \boxtimes externally

Signature

Name of external verifier / company (External verifier of Green Delta GmbH)

Lakse

2. Product

2.1 Product description

PC Wire is high-strength steel, which is mainly used for prestressing in prestressed concrete construction. Prestressing steel usually belongs to the group of unalloyed steels. Its high strength values allow high elastic elongation during prestressing. In prestressed concrete construction, this reduces the loss of prestressing force due to creep and shrinkage of the concrete, which reduces the pre-stressing and thus the initially applied prestressing force.

2.2 Application

PC Wire in straight cut-to-length bar is used to produce railroad sleepers whereas PC Wire in coils is mostly used as reinforcement in concrete pre-stressed elements.

Standards: UNI 7675 / PrEN 10138/2. For the use and application of the product the respective national provisions at the place of use apply.

2.3 Technical Data

PC Wire in Bundle

Characteristic	Value	Unit
Diameter range	7–10	mm
Steel grade range	1.570-1.620	MPa
Bundle weight range	850-1.1250	kg

PC Wire in Coil

Characteristic	Value	Unit
Diameter range	7-11	mm
Steel grade tange	1.570 – 1.860	MPa
Bundle weight range	1.250 – 2.500	kg
Coil dimension (Ø Inside: min.)	1.200	mm
Coil dimension (Ø Inside: max.)	1.500	mm

2.4 Base materials / Ancillary materials

Base Materials:

Raw material	Value	Unit
Wire Rod	100	M%

Ancillary Materials in the production process are water, sulfuric acid, phosphoric acid, activation salt, Lime, powder lubricant.

2.5 Manufacture

Siderurgica Latina Martin turns high carbon wire rod into PC wire through an integrated manufacturing process starting from in-house acid pickling & pre-coating, cold wire drawing, thermo-mechanical process to packaging both in coil and straight cut-to-length bar.

2.6 Reference Service Life (RSL)

As PC Wire is a semi-finished product with different applications, no RSL can be declared according to relevant ISO standards and EN 15804.

3. LCA: Calculation rules

3.1 Declared unit

The EPD refers to the declared unit of 1 kg PC Wire excl. packaging.

	Value	Unit
Declared Unit	1	kg

3.2 System boundary

This EPD monitors the production stage (EPD-Typ: "Cradle to factory gate"). The following production steps are considered during the production phase: Raw material supply (A1); Energy supply (A3); Manufacture of precursors (A1); Production of the packaging (A3); Transport of raw materials (A2); Manufacturing process (A3); Transport of production waste to the place of disposal (A3); Disposal of production waste (A3).

3.3 Estimates and assumptions

The infrastructure of the production facilities is not considered due to the high mass flow. In addition, only the production-related energy consumption (excluding the administration and social areas) is considered and the energy consumption was averaged over the annual pro-duction volume. All specific transport distances of the input materials were recorded and considered accordingly. The transport distances can be found in the life cycle inventory. For all journeys, a truck with a payload of 28-30 t and emission standard EURO 5 was assumed (diesel vehicle). For the utilization, a flat rate of 85% was assumed. The losses during the production phase are less than 3 wt% and thus fall below the cut-off criteria.

3.4 Cut-off criteria

All material flows that contribute to more than 1% of the total mass, energy or environmental impact of the system have been considered in the LCA. It can be assumed that the neglected processes in total contributed less than 5% to the considered impact categories. The production of the machines, plants and other infrastructure required for the production of the products was not taken into account in the LCA. The production emissions BORAX and Carbonates were not included in the LCA because no suitable data sets could be found for them.

3.5 Period under review

All process-specific data was collected for the operating year 2018.

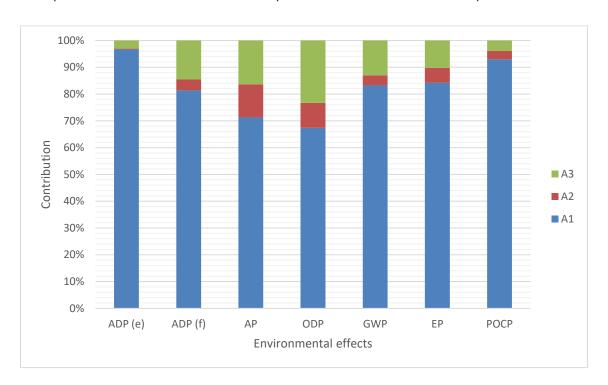
3.6 Comparability

In principle, a comparison or evaluation of EPD data is only possible if all data sets to be compared have been created in accordance with EN 15804 and the building context or the product-specific performance characteristics have been taken into account.

In this case, 1 kg PC Strand was selected as the declared unit. To be able to compare the EPD data, the declared products need the same declared units, or the declared unit must be converted with the proper conversion factors to make it comparable. The secondary data for the production phase were taken exclusively from the EcoInvent 3.4 database.

4. LCA: Results

The following tables show the results of the impact assessment indicators, resource use, waste and other output streams. The results presented here refer to the declared average product.



	De	scrin	tion of	f the sy	ıstam	houn	dary	(Y – Ir	aclude	d in I	$C \wedge \cdot N$	IND -	Mod	lule no	nt dec	·lared)
	De	scrip	tion of	tile sy	/steiii	Douil	uary	(/ – 11	iciuue	u III L	CA, IV	– שאוו	IVIOU	ule III	Ji uec	Benefits and
Pro	Product stage Construction process stage Use stag			ge End			nd of I	ife stag	e	loads beyond the system						
						1								boundaries		
Raw material supply	Transport	Manufacturing	Transport from manu- facturer to place of use	Construction-installation process	Use	Maintenance	Repair	Replacement	Refurbishmen	Operational energy use	Operational water use	De-construction / demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Resu	ılts o	f the	LCA -	Enviro	nmen	tal im	pact:	1 kg	PC Wi	re						
Parai	neter								U	nit		A1		A2		А3
Globa	al warı	ming p	otentia	I					[kg C0	D ₂ -Eq.]	2.	73E+00	,	1,23E-	-01	4,27E-01
				he stra	tosphe	ric ozo	ne lave	er		C11-Eq.		45E-07		2,00E-		5,00E-08
				land an						D ₂ -Eq.]		17E-02		2,03E-		2,69E-03
			otential) ₄) ³ -Eq.		2,78E-03		1,91E-		3,48E-04
	•			of trop	ospher	ic ozc	ne						,		·	
photo	chemi	cal oxi	dants						[kg Ethen-Eq.]		,46E-03		1,15E-04		1,47E-04	
Abiot	ic dep	letion	potenti	ial for no	on fossi	il resou	rces		[kg S	b-Eq.]	_	3,36E-05		1,08E-07		1,05E-06
Abiot	ic dep	letion	potent	ial for fo	ssil res	ources			[N	ΛJ]	3,	3,52E+01		1,77E+00		6,31E+00
Resu	ults o	f the	LCA -	Resou	rce us	e: 1 k	g PC \	Nire								
Parai	meter								U	nit		A1		A2		А3
Rene	wable	prima	ary ener	gy as en	ergy ca	rrier				NJ]		IND		IND		IND
		prima	ary ene	rgy resc	urces	as mat	erial		[MJ]		IND		IND		IND	
utiliz		<u> </u>								[MJ] 2,42E+00				2.625	00	1.075.00
				rimary e							2,	2,42E+00		3,63E-02		1,87E+00
				energy a energy a						N1] N1]		IND IND		IND IND		IND IND
				ole prim						VIJ]	2	2,87E+01		1,89E+00		6,95E+00
					ary cric	igy ics	ources	'		(g]		1,28E-01		0,00E+00		2,50E-03
Use of secondary material Use of renewable secondary fuels									۷۱] <u>ه،</u>	1,	IND		IND		IND	
Use of non renewable secondary fuels									N]]				IND		IND	
Use of net fresh water									2,38E-	-04	1,54E-03					
Results of the LCA –Output flows and waste categories: 1 kg PC Wire																
Parameter					U	Unit A1			A2		А3					
Hazardous waste disposed						[k	g]	2,	2,29E-04		1,27E-05		4,59E-05			
Non hazardous waste disposed						[k	[g]	9,	9,06E-01		2,32E-02		3,91E-02			
Radioactive waste disposed							[g]	5,	5,60E-05		1,16E-05		2,30E-05			
Building materials for re-use							g]				IND		IND			
Materials for recycling							[g]		IND IND		IND					
Materials for energy recovery							(g]		IND IND		IND					
Exported energy						/I	/IJ]		IND		IND		IND			

5. LCA: Interpretation

This is a Cradle to gate EPD, which means that the EPD is based on production phase A with the modules A1 Raw material supply, A2 Transport and A3 Production. The Raw Material supply is the module with the greatest influence on the LCA results for almost all impact categories (between 67 - 97 % of the respective impact category). Module A3 has the 2nd highest share in each impact category. Transport contributes to environmental impacts with the least amount of impact.

6. References

- [1] CML-IA April 2013 Characterization factors developed by the Institute of Environmental Sciences (CML): University Leiden, the Netherlands http://www.cml.leiden.edu/software/datacmlia.html
- [2] EN ISO 14040:2006: Environmental management Life cycle assessment Principles and framework (ISO 14040:2006)
- [3] EN ISO 14044:2014: Environmental management Life cycle assessment Requirements and guidelines (ISO 14044:2006 + Amd 1:2017)
- [4] EN ISO 14025:2011-10: Environmental labels and declarations Type III environmental declarations Principles and procedures (ISO 14025:2006)
- [5] EN 15804:2012+A1:2013: Sustainability of construction works Environmental product declarations Core rules for the product category of construction.
- [6] PrEN 10138/2:2000: Prestressing steels Part 2: Wire

kiwa	Publisher Kiwa BCS Öko-Garantie GmbH – Ecobility Experts Marientorbogen 3-5 90402 Nürnberg Deutschland/Germany	Mail Web	ecobility@bcs-oeko.de https://www.kiwa.com/de/de /uber-kiwa/ecobility-experts/
kiwa	Programme holder Kiwa BCS Öko-Garantie GmbH – Ecobility Experts Marientorbogen 3-5 90402 Nürnberg Deutschland/Germany	Mail Web	ecobility@bcs-oeko.de https://www.kiwa.com/de/de /uber-kiwa/ecobility-experts/
kiwa	Author of the Life Cycle Assessment Martin Köhrer Kiwa GmbH Voltastr.5 13355 Berlin Deutschland/ Germany	Tel. Fax. Mail Web	+49 (0)30 467761-43 +49 (0)30 467761-10 <u>Martin.koehrer@kiwa.de</u> https://www.kiwa.com/de/
GRIPPIN R	Owner of the declaration Siderurgia Latina Martin S.p.A. Via Oger Martin, 21 Ceprano (Fr) Italy	Tel. Fax. Mail Web	+39 (0)775 91991 +39 (0)775 9199-222 valerio.casa- vecchia@slmspa.com www.slmspa.com